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Modal Analysis of Multi-Connected Waveguides
Lorenzo Carbonini

Abstract—A general analysis for the modal characterization

of multi-connected uniform, hollow, conducting waveguides is
presented. It is relevant to waveguides with an “outer” con-

ductor for which analytical Green’s functions are known and

“inner” conductors described by integral equations. The TEM
modes space is analyzed, and singularities of the integral equa-

tions are studied for determining the higher order modes. The
cases of parallel wires into rectangular waveguides and above
a ground plane are worked in detail; experimental results about
a complex multi-wire line are reported. Mixed coaxial and cir’

cular offset coaxial waveguides are also analyzed. Spurious so-

lutions arise due to the structure of the integral equations for
multi-connected waveguides; criteria to discard such modes are

presented.

I. INTRODUCTION

A GENERAL analysis for the modal characterization

of multi-connected uniform, hollow, conducting

waveguides is presented; it is relevant to waveguides with

an outer conductor for which the Green’s functions are

known (possibly including the free space case), and inner

conductors represented by currents which are solutions of

integral equations. The approach shares some aspect with

that of [1]; however, in this work the attention is on the

potentials rather than on the electric field. In fact, the in-

tegral equations arise from boundary conditions of the po-

tentials, which assume a unitary aspect in this formalism.

The TM and TE modes are studied; the resonance con-

ditions are met if the linear operator (frequency depen-

dent) associated to the integral equation is singular, i.e.,

it has no inverse. This occurs only at the cutoff frequen-

cies, and from a functional viewpoint the kernel of the

operator is the resonant current.

The transverse electromagnetic (TEM) modes are stud-

ied as a limit of the TM case; a definition of the charac-

teristic impedance in a particular case is stated and a basis

of the TEM vector space with a physical meaning is de-

termined for wire lines.

The integral formulation for TE and TM modes is the

same as that of [2], [3] if the free space Green’s function

is used. Various coaxial waveguides are analyzed by use

of a moment method (MM) approach analogous to that of

[3], and a good agreement with the literature is found; a

comparison with the techniques of [2] is presented. Some

results about the modal features of offset circular wave-

guides are shown.
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The theory is further applied to the case of parallel wires

into rectangular waveguides and above a ground plane.

The results about the characteristic impedance agree with

those found in the literature (e, g., [4]), and have been

validated also by MM techniques. Experimental results

about a complex multiwire transmission line above a
ground plane exhibit a good agreement with the theoreti-

cal analysis.

II. BOUNDARY CONDITIONS FOR THE POTENTIALS

The vector potential A and the scalar potential @

related to the electric and magnetic field as follows:

H=VXA

E=–Vr$-jtip” A,

are

(1)

where m is the angular frequency, v is the medium perme-

ability.

With the conventions of Fig. 1, the boundary condi-

tions in uniform conducting waveguides are (for a com-

parison, see [5]):

n“H=O*$Az–~AC=O ‘ (2a)

nxE=O*V, ~+jup A,=O (2b)

where A, is the tangential potential vector and VT is the

gradient along the conductor surface; c is the transverse

tangent unit vector, AC = c “ A and d/de = c “ V. It

should be noted that (2a) is a direct consequence of (2b)

if u # O; in the following (2b) will be used as boundary

condition for the potentials.
Every field is assumed to depend on z as exp ( –.jo!z),

where a2 = k2 – kf; k = u ~ is the wavenumber, kt
the cut-off wavenumber for the mode under study, ~ the
medium permittivity. The z dependence will be neglected

in the two-dimensional problem and k is replaced by kf in

every expression.

The potential A generated by a current density J for

canonical geometries is expressed by an analytical dyadic

Green’s function G:

A(p) = –
s~

c@’ G(k, p, P’) “ J(P’)

s
(3)

rz(p) x A(p) = O if p is on the conductor surface

where S is the waveguide section and p = (.x, y) the co-

ordinate vector.
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Fig. 1. Geometty of the general multl-connected wavegulde.

The analogous expression for the potential @ is

@(p) = –l/e “
!!

dp’g(k, p, p’) “ cr(p’)

s

@(P) = o if p is on the conductor surface

(4)

where g is the scalar Green’s function, O(p) = – V -

J/jco is the charge density.
Every Green’s function satisfies the boundary condi-

tions specified by (3) and (4) only on the surface of one

conductor, which will be termed the “outer” conductor

(a radiation condition in free space).

In the solution procedure a canonical outer conductor

is to be singled out together with the corresponding

Green’s functions; the remaining ‘ ‘inner” ones are rep-

resented by tangential electric current distributions. Fi-

nally, the solution currents are obtained by enforcing the

boundary conditions (2b) at the inner conductors surface.

III. TM MODES

It may be verified from direct substitution into Maxwell

equations that both the electric current on the inner con-

ductors and the potential vector are longitudinal; more-

over, O(p) = O and @ = 0, Equation (2b) becomes

A,(p) = o (5)

The boundary conditions of AZ on the outer conductor

are the same as those of the potential o, and the Green’s

function g defined in (4) may be used. If L inner conduc-

tors are present, (5) may be expressed as

~,i, - ~:r’ds’ g(k,, p,(S), pr,(s’ ))

“ .lr?(s’) = o (Y=l, ””c, L) (6)

where J, is the (longitudinal) current density on the rth

conductor parametrized by pr (s) (O < s < s,), s is the arc

length.

If the linear operator involved is denoted by L“, (6)
may be written as L“(J) = O. From the theory of linear

operators it is well-known that a necessary condition for

the existence of nontrivial solutions .I of (6) is that LM has

no inverse. The operator is singular only if a resonance

occurs; in this case, the currents which are annihilated by

LM are just the resonant ones which generate the higher

order mode,

If 1, is the total current of the rth conductor, (6) im-

plies:

g~”~=o. (7)

The impedance matrix ~~ is defined by

s,

JJ

s,,

(z&I = ‘ZO “ o ds o ds ‘ g(~r, p,(s), Pr,(s’))

“ b,(s) “ br!(s’ ) (8)

T“where 20 = p/e IS the medium characteristic impedance

and J,(s) = 1, Qb,(s).

In the case of wire lines the current is constant along

the wire surfaces; b,(s) = 1/s,, and the current densities

functionally depend only on L parameters. Equation (6)

is equivalent to (7), and may be written as det (Z~) = O.

The Green’s functions for bounded regions usually de-

pend on k as k2; as a consequence, both k, and –k, are

solutions of (6) corresponding to the same resonant cur-

rent.

Unbounded regions exhibit peculiar properties; e.g., in

free space the Green’s function g is the Hankel function

H~2) (lc p – p‘ I). The wavenumber k, is complex; this fact

is ultimately due to the power loss which occurs by radia-

tion in the far field. In this case, the symmetry is k, ~
–k:, where * denotes the complex conjugate, due to the

property of the Hankel function H$) (z*e ‘J m) =

– [H~2)(z)]* (e.g., [5]); the resonant currents are complex

conjugate. These properties have been extensively studied

in singularity expansion methods (SEM, e.g., [7]).

IV. TE MODES

The current in this case is transverse, i, e., J “ z = O,
and is parallel to the vector c (Fig. 1); the full (2b) has to

be taken into account to find the higher order TE modes.

By use of (3), (4) and the properties of the arc-length

parametrization choice, (2b) assumes the following form:

{
,,;, : ~: ds’ g(kt, p,(S), pr@ )) o arl(s ‘ )

!
s,,

+ jup . ds’ C,(S) “ G(k,, p,(S), prr(s’ ))
o

1“ C,?(S’) .Irr(s’ )) = o. (9)

The solutions of (9) exhibit the same symmetry prop-

erties of TM modes, both for bounded and unbounded re-

gions.

In the case of wire lines, the assumption of constant

current Y eliminates the first term in (9); moreover, the

second term is negligible for arbitrarily small conductors.

Hence a very low perturbation of the TE modes may be
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expected; the validity of this claim has been verified in a trix (&, which is proportional to E(c&, ~,,); the poten-

particular case [8]. tials ~, are generated assuming 1. = 1 on the rth wire and

I. = O elsewhere. Such a basis has a physical meaning,

V. TEM MODES

The TEM modes correspond to the limiting case of TM

modes as kt -+ O. The only difference is that, from (2b),

the potential @on the conductor surface is locally constant

(i.e., it varies from a conductor to another only).

In this case the relevant integral equation is

,,$, - z, “ J: ds’ g(kr, p,(s), prr(s’ ))

(lo)

‘ J,,(S’ ) = J’-r (r=l, ””, L)

where V, is the potential of the rth conductor; (10) is an

integral equation for the current densities of the inner con-

ductors only.

The relationship between the total currents ~ = {1,} and

the potentials ~ = {V,} is, in matrix notation:

~“~=y (11)

where ~ is expressed by (8) as kf ~ O.
To define a characteristic impedance ZC for a multi-

connected waveguide, it will be assumed that the inner

conductors are all connected at the termination (i. e., V,

=V’O, r= l,-””, L). The unbalanced characteristic

impedance Z, is the impedance through which the inner

conductors are connected at the termination to the outer

one without power reflections; it may be obtained by

equating the power flowing across every section of the

line to the dissipated power at the termination. The fol-

lowing relation holds:

ZC=~’”~”~/l~ (12)

where 1~ is the total current flowing in the tenminal load,

which is the sum of the currents 1,.

If we regard ZC as a function of ~, the current ~ solution

of (11), when V, = VO (r = 1, “ o c , L), is a stationary

point of the unbalanced impedance ZC. This result maybe

verified by differentiating (12) and using (11); moreover,

under the assumption that ~ has positive eigenvalues only,

by doubly differentiating (12) it can be shown that the

current ~ is a (local) minimum of Zc.

Finally, it should be noted that the set of TEM poten-

tials generated through (10) depends on L parameters, ac-

cording to the choice of bounda~ potentials V,: hence it

is a vector space of finite dimension L.
The following of this section is devoted to the case of

wire lines.

It is possible to choose a power basis of the TEM vector

space in which the following quadratic functional is di-

agonal:

.E(@, y) =
[!

dp vt~(p) “ vtyJ(p)/(2 “ ZCJ. (13)

s

The problem is easily solvable by linear algebra tech-

niques because it is equivalent to making diagonal the ma-

since the power of a general potential may be expressed

as the weighted sum of the powers pertaining to the ele-

ments of the vector system.

VI. ANALYSIS OF COAXIAL WAVEGUIDES BY THE

MOMENT METHOD

The numerical approach to solve the relevant integral

equations by the MM is similar to that of [3]; a Galerkin’s

procedure is used, with triangle functions as basis and test.

The relevant linear system is symmetric. In [3] the double

integrals were approximated by a function evaluation on

4 x 4 points; in this paper a 6 x 6 points approximation

is tried, and a comparison between the Galerkin’s proce-

dures and the point-matching solution of [2] is made.

The Muller’s method is used to find the zeros of the

determinant of the relevant impedance matrix, according

to [2].

In Table I a comparison is shown between the method

here used and that of [2] for a circular waveguide in the

TM and TE cases; the Galerkin’s procedures are less ac-

curate, both in the 4 X 4 and in the 6 X 6 version, so a

greater number of subsections is needed to increase the

accuracy. Moreover the impedance matrix computation in

the Galerkin’s procedure requires, if all the symmetries

are taken into account, 0(s 2 “ N “ (N + 1)/8) evaluations

of the Hankel function, while a point-matching solution

with asymmetric matrix ([2]) requires @ “ N2) (s is the

number of function values computed for evaluating each

one-dimensional integral, N is the order of the matrix); if

s > 8 the point-matching procedure is faster as N in-

creases.

A sufficient accuracy is achieved if the length A of each

linear subsection of the boundary is subjected to the re-

striction:

k. A< O.50 (14)

with possible higher limits for the TM case.

The results about a mixed coaxial waveguide (Fig. 2)

in the TE and in the TM case (Table II and III) exhibit a

good agreement with those of [2].

Finally, the case of an offset circular coaxial waveguide

(Fig. 3) is analyzed; the numerical results are shown in

Table IV. A part of the modes are labeled by “S”; these

are spurious modes, which represent inner resonances of

the inner conductor. These solutions may be”discarded by

computing the resonant induced current; the currents cor-

responding to the non-excited conductors are very small,

about six orders of magnitude lower than the resonant cur-

rent. Moreover it has been verified numerically that the

spurious frequencies depend only on the geometrical

modeling of the ‘inner’ conductor; hence an efficient nu-

merical code should find the resonant frequencies of the

inner conductors as a first step to accurately exclude the

spurious solutions when dealing with the complete prob-

lem.
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TABLE I

CIRCULAR WAVEGUIDE—TE AND TM MODES VALUES OF k a, N = 40

Mode Exact Ref. [3] Diff. % 6 x 6 Pts. Diff. % Ref. [2] Diff. %

TE
1 1.8412 1.8487 0.41 — 1.8462 0.27

2 3.0542 3.0676 0.44 — — 3.0645 0.34

TM

1 2.4048 2.4147 0.41 2.4130 0.34 2.4111 0.26

2 3.8317 3.8475 0.41 3.8447 0,34 3.8416 0.26

(~
a.,.,-’

,.-
,,-

0. 25a;
..,’

0. 5a?

.,-,.,

Fig. 2. Mixed coaxial waveguide ([2]).

TABLE II
MIXED COAXIAL WAVEGUIDE—TE MODES VALUES OF k a

Mode Computed Ref. [2] Diff. %

1 1.7453 1.7407 0.26
2 3.0416 3.0441 0.08
3 4.2185 4.2199 0.03
4 4.6311 4,6451 0.30
5 5.2066 —

TABLE III
MIXED COAXIAL WAVEGUIDE—TM MODES VALUES OF k . a

Mode Computed Ref. [2] Diff. %

1 3.9019 3.8919 0.26
2 4.1717 4.1666 0.12
3. 4.4564 4.4450 0.26
4 5.2660 5.2645 0.28
5 6.4277

Fig. 3, Offset circular coaxial waveguide.

TABLE IV

OFFSET CIRCULAR COAXIAL WAVEGUIDE—TE AND TM MODES VALUES

oFk.a

TE . Computed TM Computed

1 1.4452 1 4,5517
2 2.6991 S1 4.8412
S1 3.7063 2 5.3171

3 3.9387 3 6.0397

4 4.7761 4 6.7270

5 5.0963 5 7.3836

6 5.6834 S2 7.7130
— — 6 8.0129

Mode TE4

““~
0,9

i /“
0.8

0,7 1 / I
0,6-

~

E
0,5-

$ 0,4-

0.3-

O.z -

,.,
,..’

,{.
,..

,,,
.,,’0.1- ,.,

Inner conductor

-0.! .
. . .Q!Jw. gp.qd~qtp.r...

90.0 120.0 150.0 ~ 180.0 210.0 2L0,0 270.0

@(degrees)

Fig. 4. Current of the TE4 mode of the circular coaxial offset waveguide
(Fig. 3).

In comparison with the case of the coaxial circular

waveguide, new features in the modal characterization of

the offset one appear; in particular, in the case of cylin-

drical symmetry the inner and outer conductor currents

exhibit an equal number of zeros, maxima, and minima.

In the offset waveguide a part of the modes correspond

to the symmetric case (TE 1, 2, 3, 5, TM2, 4, 6), while

the remaining ones exhibit currents which are intrinsic-
ally different. The case of the TE4 mode is shown in Fig.

4. It is an open question whether these modes arise by

splitting of some degenerate mode or result from the shift

toward lower frequencies of very high order symmetric
modes.

VII. WIRE LINES INTO RECTANGULAR WAVEGUIDES

The geometry is shown in Fig. 5; the outer conductor

is now a rectangular wavegui~e and the Green’s function

g is

4 sin (k~x) - sin (k~x’ ) “ sin (k. y) “ sin (k. y’ )
g(k, p,p’)==” m:=, k2–k~–k: (15)
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b

‘o

u

00..000 . .

‘\

(x;,Yr)

............... . .. . ........ .... . ....... ... +’X
a

Fig. 5. Geomet~of multi-wire lines into arectangular waveguide.

TABLE V

SINGLE WIRE INTO A RECTANGULAR WAVEGUIDE—PERTURBED TM MODES

VALUESOFk . b,a =2 . b,xr=b, b, =b/2

Mode Imp. Matrix MM Solution Diff. %

2. A,= O.O1. a
1 3.9875 3.9940 0.16

2 6.0773 6.0850 0.13

3 8.6819

4 9.7804

5 10.7630

2. A,= O.OO1. a

1 3.8108 3.8203 0.25

2 5.8907 5.8990 0.14

3 8.5936 —

4 9.6852 — .

5 10.6632

where a and b are the rectangular waveguide climensions,

km = m~/a and k. = nx/b. If wires of square section of

sides 2 “ A, are located at (x,, y,), the TM impedance

matrix according to (8) is

TABLE VI

Two WIRES INTO A RECTANGULAR WAVEGUIDE—PERTURBED TM MODES

VArsJmoEk .b, a=2. b,w=b, bl= 6/2

Mode Imp. Matrix MM Solution Diff. %

2. A,= O.O1. a
1
2

3
4

5

2. A,= O.OO1. a
1

2

3

4

5

3.9905

5.3426
6.0794

9.7821
10.9025

3.8138

4.9673

5.8918

8.5949

9.6868

3.9962

5.3475
—

—
—

—
—
—
—

0.14

0.09
—

.
—

—
—
—
—

Y

1!
w

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.000000 000

\

(X;, Y>
/$/

‘o /////////////////’’//// >x

Fig. 6. Geometry of multi-wire lines above a ground plane.

TMz~ + 1.z. + 1 modes only are perturbed, and compared
with the results obtained by MM. Table VI collects the

results for a symmetric two-wire line, in which the

TM~, ~. + ~ modes only are perturbed. The numerical res-

4“z~
(g~)rrl = – —

~ gin (k~x,) sin (k~x,) sin (k. y,) sin (k,,y~’) . ~, . ~ rI

a-b “m, n=l k2_k:–k2 mn mn
n

(16)

where the coefficients ZY~,,, which characterize the wire

dimension, are olution by MM proved to be difficult due to the sharpness

1

[

sin (k. A,)
of the zeros of the function to be evaluated.

CY;n = –
2

COS(kmA.) “
k. A,

VIII. WIRE LINES ABOVE A GROUND PLANE
sin (kmA,)

+
k. A, 1

COS (k. A,) . (17) The geometny is shown in Fig. 6; the outer conductor

is now the ground plane, and the relevant Green’s func-

The computational efficiency in the evaluation of (16) tion g is

may be improved by reducing the double sum to a single +m

!~

+m

one by techniques explained in [9]; the analytical results g(k, f.), P’) = ~ df
~~ sin ($ y) - sin (~ y’ )

kz–~2–~z
are shown in [8].

—m —m

The results about the characteristic impedance have “ exp (–j~(x – x’)) (18)
been compared with those of [4]; if d = 1.169 “ (2A),

where d is the equivalent circular wire diameter, the re- The TM modes impedance matrix according to (8) is

suits agree to within 0.01% if d/”a < 0.02 for a single +CO +m
wire symmetrically sited in a square waveguide. The

‘! !

sin (~ y,) “ sin (t y,)
(~~),,r = –$ _~ d~ _w d.$ k2 _ ~z _ $2

agreement is within 0.1 % for two wires when d / w < 0.1

aid w/a < 0.9.

The cut-off wavenumbers of TM modes are reuorted in

Table V for a symmetric single wire line, in which the (19)



670 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 4, APRIL 1992

where the coefficients a it, in analogy with (17), are

(

sin (f A,) + sin ({A,)
~;t = ~ cos (tA,) o

$ A, {A,

1“ cos (&A,) . (20)

The computational evaluation of ( 19) may be improved

by reducing the double integral to a single one by complex

plane integration techniques; results for the static imped-

ance matrix are shown in the Appendix.

The results about the characteristic impedance have

been compared with those of [4]; if d = 1.163 “ (2 “ A),

where d is the equivalent circular wire diameter, the re-

sults agree to within 0.01 % when H/d > 3, both for a

single wire and for a couple of wires.

The complex cutoff wavenumbers for TM modes are

found by using an impedance matrix different from that

of ( 19) to avoid the computation of complex integrals; the

Green’s function for the half-space was used:

g(k, p, p’) = –j/4 “ [H$2yklp – p’ 1)

– ll~yrqp – p*’ ])] (21)

where H$2) is the Hankel function of 2nd kind of order O,

and p*’ = (x’, – y’ ). A point-matching approximation is

used, in the sense that for each element of the impedance

matrix the potential is evaluated at the wire center. The

procedure to find the zeros of det (ZL) is similar to that of

the previous section, except for the need to calculate com-

plex rather than real wavenumbers.

The results for a single-wire line above a ground plane

are reported in Table VII. As could be expected from SEM

analyses, the zeros are grouped into layers in the complex

k plane; the imaginary part of k increases as the wire di-

ameter decreases.

The computed values for a two-wire line are reported

in Table VIII where the symmetry of the induced currents

is identified. In the frequency domain SEM framework [7]

the current induced by an arbitrary excitation of the wire

line is described as an expansion in the resonant currents,

whose coefficients are proportional to 1 /(k – kt). It is

remarkable that the cutoff frequency of the lower order

antisymmetric modes has a large imaginary part; hence

the contribution of these resonances to the current expan-

sion at real excitation frequencies should be less impor-
tant than that of the symmetric modes, and a balanced

TEM transmission line is expected to provide a wider fre-

quency band than a balanced one.

Finally, a complex multiwire transmission line above a

ground plane was designed by use of these techniques; the

shape of the central section is shown in Fig. 7, and the

wire diameters were chosen in order to yield a 2000 bal-

anced characteristic impedance. It is a balanced transmis-

sion line, and the outer wire array works as a shield of the

inner TM fields; the VSWR in Fig. 8 is less than 2 over

a wide frequency band, a good result considering the
complexity of the structure and the termination prob-

TABLE VII

SINGLE WIRE ABOVE A GROUND PLANE—TM MODES VALUES OF k . H

Mode

1

2
3
4
5
6

2. A,= O.O1. H

2.8857 + 1.1006j

6.0830 + 1.1939j

9.2569 + 1.2439j

12.4233 + 1.2769j
15.5857 + 1.3011j
18.7459 + 1.3200J

2. A,= O.OO1. H

2.8008 + 1.2941j

5.9890 + 1.4131j

9.1516 + 1.4808j

12,3067 + 1.5274j
15.4583 + 1.5628j
18.6080 + 1.5911j

2. A, = 0.0001 . H

2.7532 + 1.4738j
5.9423 + 1.5699J
9.1029 + 1.6469j

12.2556 + 1.7009j
15.4048 + 1.7423j
18.5521 + 1.7757j

TABLE VIII

Two WIRES ABOVE A GROUND PLANE—TM MODES
VALUES OFk. H, W=~. H,2 .A, =O,O1 H

Mode Computed Pari~y

1
~

3

4
5

6
7
8
9

10

11

0.5568 + 1.8545j

2.9521 + O.6344J

3.7270 + 1.7467J

5,7892 + O.7964J
6,9491 + 1.3116j

9.7284 + 1.0825j
12.2038 + 0.9664)
12,8284 + 1.2458]
15.0404 + 1.0334J
16.0874 + 1.0891]

18.1773 + 1.3646j

o
E

o
E

o
0
E
o
E

o
E

:. U=o
~. $

:0,175. “.

/////////////////////////////////

Fig. 7. Central section of the designed multiwire transmission line.

3.5

3.0 1

Fig. 8. Measured VSWR of the transmission line

lems. Moreover, field measurements of the TEM mode

inside the line have shown an agreement better than

1.5 dB with the theoretical results.

IX. CONCLUSION

The theoretical setting for a complete modal character-

ization of multi-connected, uniform, hollow, conducting

waveguides has been established. The numerical analysis



CARBONINI:MODAL ANALYSISOF MULTI-CONNECTEDWAVEGUIDES 671

is performed only on the inner conductors; this approach

leads to a considerable reduction of the degrees of free-

dom of the problem, provided that the Green’s functions

of the outer conductor are known. Moreover, it has been

verified that in the case of wire lines in rectangular wave-

guides a standard MM solution to the problem is very dif-

ficult; the numerical efficiency of the algorithm is greatly

improved by the present approach, according to [1].

The numerical procedures for determining the higher

order modes of multi-connected waveguides w ith a surface

integral formulation always exhibit spurious solutions at

the inner conductor resonant frequencies; two criteria to

discard without any doubt such modes have been pro-

posed.

The analysis of waveguides whose spatia”l domain is

unbounded shares many aspects with SEM techniques

(e. g., [7]); it has been verified (mainly in time domain

problems) that an expansion of the currents in the base of

complex resonant currents gives co,mect resulks (see also

[10]). A complete study in the SEM framework of wave-

guides whose spatial domain is unbounded would lead to

an exact modal characterization of these geometries, in

analogy with the classical analysis of closed waveguides

by means of orthogonal functions; however the required

functional analysis techniques are very complex.

Finally, it is thought that a careful characterization of

useful basis for the vector space of TEM modes in wire

lines may lead to simple criteria in establishing optimi-

zation algorithms for some parameters of the problem

(e.g., TEM mode field uniformity, or impedance prop-

erties); further analyses should be carried on in this direc-

tion.

APPENDIX

It is possible to reduce the double integral in (19) to a

single one; the convergence of the integral is exponential

for off-diagonal matrix elements, quadratic for diagonal

ones, The residues theorem and Jordan’s lemma are used;

only the relevant results are shown. The static impedance

matrix is considered,

If I y, – y,, I > lx, – x., I it is useful to perfotm the $

integration to achieve a fast converging ~ integral; the re-

sult is

!
+W

(~)rrl = –zo/(27r) “ d~ COS(flxr “– x,1)
o

“ [exp (–~1 y, + Y,II) – exp (–~1 ,yr – yrl)l

.7; ”7;

r
(Al)

which is valid if 1y, – y,, I > A, + A,,; -y~ may be ob-

tained by replacement of t with jr in tY~~ ((21)).

In the dual case, the result is

!

+’=

(~)rrr = zo/7r “ o d~ sin (~ y,) . sin (i y,)

which is valid if lx, – x,~l > A, + A,; y; may be ob-

tained by replacement of ~ with j~ in a&.

Finally, if the matrix element is diagonal, the proce-

dure is slightly different. The final result is

!

+W

(Z)rr = z~/(47r) “ dg sin2 (t y,) “ @‘/& (A3)
o

where

P’ = sin (&A,) /(&A,) o

+ 2 “ cos ($ A,) “

+ COS2(~A,) o [1

[cosh ($A.) “ sin (&A,) /(&A,)

sinh (f Ar)/(fAJl - q (–fA~)

– exp (–$A,)

. sinh ($ Ar)/(&A~)l /(&A~). (A4)
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