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Modal Analysis of Multi-Connected Waveguides

Lorenzo Carbonini

Abstract—A general analysis for the modal characterization
of multi-connected uniform, hollow, conducting waveguides is

presented. It is relevant to waveguides with an ‘‘outer’” con-

ductor for which analytical Green’s functions are known and
““‘inner’’ conductors described by integral equations. The TEM
modes space is analyzed, and singularities of the integral equa-
tions are studied for determining the higher order modes. The
cases of parallel wires into rectangular waveguides and above
a ground plane are worked in detail; experimental results about
a complex multi-wire line are reported. Mixed coaxial and cir-
cular offset coaxial waveguides are also analyzed. Spurious so-
lutions arise due to the structure of the integral equations for
multi-connected waveguides; criteria to discard such modes are
presented.

I. INTRODUCTION

GENERAL analysis for the modal characterization

of multi-connected uniform, hollow, conducting
waveguides is presented; it is relevant to waveguides with
an outer conductor for which the Green’s functions are
known (possibly including the free space case), and inner
conductors represented by currents which are solutions of
integral equations. The approach shares some aspect with
that of [1]; however, in this work the attention is on the
potentials rather than on the electric field. In fact, the in-

tegral equations arise from boundary conditions of the po-

tentials, which assume a unitary aspect in this formalism.

The TM and TE modes are studied; the resonance con-
ditions are met if the linear operator (frequency depen-
dent) associated to the integral equation is singular, i.e.,
it has no inverse. This occurs only at the cutoff frequen-
cies, and from a functional viewpoint the kernel of the
operator is the resonant current.

The transverse electromagnetic (TEM) modes are stud-
ied as a limit of the TM case; a definition of the charac-
teristic impedance in a particular case is stated and a basis
of the TEM vector space with a physical meaning is de-
termined for wire lines.

The integral formulation for TE and TM modes is the
same as that of [2], [3] if the free space Green’s function
is used. Various coaxial waveguides are analyzed by use
of a moment method (MM) approach analogous to that of
[3], and a good agreement with the literature is found; a
comparison with the techniques of [2] is presented. Some
results about the modal features of offset circular wave-
guides are shown.
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The theory is further applied to the case of parallel wires
into rectangular waveguides and above a ground plane.
The results about the characteristic impedance agree with
those found in the literature (e.g., [4]), and have been
validated also by MM techniques. Experimental results
about a complex multiwire transmission line above a
ground plane exhibit a good agreement with the theoreti-
cal analysis.

II. BouUNDARY CONDITIONS FOR THE POTENTIALS

The vector potential A and the scalar potential ¢ are
related to the electric and magnetic field as follows:

H=V XA (1)
E=—-Vé — jou - A,

where w is the angular frequency, u is the medium perme-
ability.

With the conventions of Fig. 1, the boundary condi-
tions in uniform conducting waveguides are (for a com-
parison, see [5]):

) 0
.H_——_ — — =3
n 0= e A, % A, =0 (2a)
an¥O:VT¢+jpr,=O (2b)

where A is the tangential potential vector and V. is the
gradient along the conductor surface; ¢ is the transverse
tangent unit vector, A, = ¢ - Aand d/dc = ¢ - V. It
should be noted that (2a) is a direct consequence of (2b)
if w # 0; in the following (2b) will be used as boundary
condition for the potentials.

Every field is assumed to depend on z as exp (—joz),
where o2 = k? — k2, k = w\/; is the wavenumber, &,
the cut-off wavenumber for the mode under study, e the
medium permittivity. The z dependence will be neglected
in the two-dimensional problem and k is replaced by k; in
every expression.

The potential A generated by a current density J for
canonical geometries is expressed by an analytical dyadic
Green'’s function G:

A(p) = — SS dp' Gk, p, p") - J(p"
s
n(p) X A(p) =0 if p is on the conductor surface
where S is the waveguide section and p = (x, y) the co-
ordinate vector.
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Fig. 1. Geometry of the general multi-connected waveguide.

The analogous expression for the potential ¢ is

o(p) = —1/e - SS dp' gk, p, p’) - o(p')
/o), @)

if p is on the conductor surface

é(p) =0

where g is the scalar Green’s function, o(p) = -V -
J/jw is the charge density.

Every Green’'s function satisfies the boundary condi-
tions specified by (3) and (4) only on the surface of one
conductor, which will be termed the *‘outer’” conductor
(a radiation condition in free space).

In the solution procedure a canonical outer conductor
is to be singled out together with the corresponding
Green’s functions; the remaining ‘‘inner’’ ones are rep-
resented by tangential electric current distributions. Fi-
nally, the solution currents are obtained by enforcing the

boundary conditions (2b) at the inner conductors surface. 7

III. TM MoDES

It may be verified from direct substitution into Maxwell
equations that both the electric current on the inner con-
ductors and the potential vector are longitudinal; more-
over, o(p) = 0 and ¢ = 0. Equation (2b) becomes

A(p) =0 o)

The boundary conditions of A on the outer conductor
are the same as those of the potential ¢, and the Green’s
function g defined in (4) may be used. If L inner conduc-
tors are present, (5) may be expressed as

L

2 - SO ds' gtk;, p,(s), pr(s’))

¥ =1

- J.(s") =0 -+, L) 6)

where J, is the (longitudinal) current density on the rth
conductor parametrized by p,(s) (0 < s < s,), 5 is the arc
length.

If the linear operator involved is denoted by LY, (6)
may be written as L¥(J) = 0. From the theory of linear
operators it is well-known that a necessary condition for
the existence of nontrivial solutions J of (6) is that L™ has

no inverse. The operator is singular only if a resonance
occurs; in this case, the currents which are annihilated by
L" are just the resonant ones which generate the higher
order mode.

If I, is the total current of the rth conductor, (6) im-
plies:

Z I1=0. Q)

The impedance matrix Z; is defined by

Sr

(Zk)rr’ = _ZO : S ds SO ds,g(kn pr(s)9 pr'(s’))

0
* br(s) * br’(sl) (8)

where Z, = x/u-/‘e is the medium characteristic impedance
and J,(s) = L - bJs).

In the case of wire lines the current is constant along
the wire surfaces; b,(s) = 1/s,, and the current densities
functionally depend only on L parameters. Equation (6)
is equivalent to (7), and may be written as det (Z,) = 0.

The Green’s functions for bounded regions usually de-
pend on k as k?; as a consequence, both &, and —k, are
solutions of (6) corresponding to the same resonant cur-
rent. ,

Unbounded regions exhibit peculiar properties; e.g., in
free space the Green’s function g is the Hankel function
H® (k|p — p']|). The wavenumber , is complex; this fact
is ultimately due to the power loss which occurs by radia-
tion in the far field. In this case, the symmetry is &k, —
—k;*, where * denotes the complex conjugate, due to the
property of the Hankel function HY (z%e ™) =
~[HP@)]* (e.g., [5]); the resonant currents are complex
conjugate. These properties have been extensively studied
in singularity expansion methods (SEM, e.g., [7]).

IV. TE MobEs

The current in this case is transverse, i.e., J * z = 0,
and is parallel to the vector ¢ (Fig. 1); the full (2b) has to
be taken into account to find the higher order TE modes.

By use of (3), (4) and the properties of the arc-length
parametrization choice, (2b) assumes the following form:

r=1

L 9 Sy
Z {a_ S ds’' g(kta pr(s)5 pr’(s,)) ' Gr’(s,)
5 JO
+j(.l)ﬂ ' SO ds’ cr(s) : G(kt’ pr(s)’ pr’(s’ ))

©ep(s’) Jr'(sl))} =0. ®

The solutions of (9) exhibit the same symmetry prop-
erties of TM modes, both for bounded and unbounded re-
gions.

In the case of wire lines, the assumption of constant
current J eliminates the first term in (9); moreover, the
second term is negligible for arbitrarily small conductors.
Hence a very low perturbation of the TE modes may be
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expected; the validity of this claim has been verified in a
particular case [8].

V. TEM MoDES

The TEM modes correspond to the limiting case of TM
modes as k, = 0. The only difference is that, from (2b),
the potential ¢ on the conductor surface is locally constant
(i.e., it varies from a conductor to another only).

In this case the relevant integral equation is

L

2 So ds’ (ki (), pr(s")

(10)
T =V, =1, D)

where V, is the potential of the rth conductor; (10) is an
integral equation for the current densities of the inner con-
ductors only.

The relationship between the total currents [ = {/,} and
the potentials V = {V,} is, in matrix notation:

Z-1=V (1D

where Z is expressed by (8) as k, — 0.

To define a characteristic impedance Z, for a multi-
connected waveguide, it will be assumed that the inner
conductors are all connected at the termination (i.e., V,
=V, r =1, --+ , L). The unbalanced characteristic
impedance Z, is the impedance through which the inner
conductors are connected at the termination to the outer
one without power reflections; it may be obtained by
equating the power flowing across every section of the
line to the dissipated power at the termination. The fol-
lowing relation holds:

Z. =121/} (12)

where I is the total current flowing in the terminal load,
which is the sum of the currents /..

If we regard Z_ as a function of [, the current [ solution
of (11), when V, = Vo (r = 1, - - -, L), is a stationary
point of the unbalanced impedance Z,. This result may be
verified by differentiating (12) and using (11); moreover,
under the assumption that Z has positive eigenvalues only,
by doubly differentiating (12) it can be shown that the
current / is a (local) minimum of Z,.

Finally, it should be noted that the set of TEM poten-
tials generated through (10) depends on L parameters, ac-
cording to the choice of boundary potentials V,: hence it
is a vector space of finite dimension L.

The following of this section is devoted to the case of
wire lines.

It is possible to choose a power basis of the TEM vector
space in which the following quadratic functional is di-
agonal:

£, = || do Vot - voww/@ -z, (3

N

The problem is easily solvable by linear algebra tech-
niques because it is equivalent to making diagonal the ma-
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trix (Z),», which is proportional to E(¢,, ¢,); the poten-
tials ¢, are generated assuming I, = 1 on the rth wire and
I, = 0 elsewhere. Such a basis has a physical meaning,
since the power of a general potential may be expressed
as the weighted sum of the powers pertaining to the ele-
ments of the vector system.

VI. ANaLysis oF CoaxiaL. WAVEGUIDES BY THE
MoMENT METHOD

The numerical approach to solve the relevant integral
equations by the MM is similar to that of [3]; a Galerkin’s
procedure is used, with triangle functions as basis and test.
The relevant linear system is symmetric. In [3] the double
integrals were approximated by a function evaluation on
4 X 4 points; in this paper a 6 X 6 points approximation
is tried, and a comparison between the Galerkin’s proce-
dures and the point-matching solution of [2] is made.

The Muller’s method is used to find the zeros of the
determinant of the relevant impedance matrix, according
to [2].

In Table I a comparison is shown between the method
here used and that of [2] for a circular waveguide in the
TM and TE cases; the Galerkin’s procedures are less ac-
curate, both in the 4 X 4 and in the 6 X 6 version, so a
greater number of subsections is needed to increase the
accuracy. Moreover the impedance matrix computation in
the Galerkin’s procedure requires, if all the symmetries
are taken into account, 8(s> - N - (N + 1) /8) evaluations
of the Hankel function, while a point-matching solution
with asymmetric matrix ([2]) requires 6(s + N %) (s is the
number of function values computed for evaluating each
one-dimensional integral, N is the order of the matrix); if
s > 8 the point-matching procedure is faster as N in-
creasces.

A sufficient accuracy is achieved if the length A of each
linear subsection of the boundary is subjected to the re-
striction:

kA=< 0.50

with possible higher limits for the TM case.

The results about a mixed coaxial waveguide (Fig. 2)
in the TE and in the TM case (Table II and III) exhibit a
good agreement with those of [2].

Finally, the case of an offset circular coaxial waveguide
(Fig. 3) is analyzed; the numerical results are shown in
Table IV. A part of the modes are labeled by “‘S”’; these
are spurious modes, which represent inner resonances of
the inner conductor. These solutions may be discarded by
computing the resonant induced current; the currents cor-
responding to the non-excited conductors are very small,
about six orders of magnitude lower than the resonant cur-
rent. Moreover it has been verified numerically that the
spurious frequencies depend only on the geometrical
modeling of the ‘inner’ conductor; hence an eflicient nu-
merical code should find the resonant frequencies of the
inner conductors as a first step to accurately exclude the
spurious solutions when dealing with the complete prob-
lem.

(14)
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TABLE 1
CIRcULAR WAVEGUIDE—TE AND TM MODES VALUES OF k * a, N = 40
Mode Exact Ref. [3] Diff. % 6 X 6 Pts. " Diff. % Ref. [2] Diff. %
TE
i 1.8412 1.8487 0.41 — — 1.8462 0.27
2 3.0542. 3.0676 0.44 — — 3.0645 0.34
™
1 2.4048 2.4147 0.41 2.4130 0.34 2.4111 0.26
2 3.8317 3.8475 0.41 3.8447 0.34 3.8416 0.26
TABLE IV
OFFSET CIRCULAR CoAaXiaL WAVEGUIDE—TE AND TM MODES VALUES
OFk * a
TE - Computed ™ Computed
1 1.4452 1 4.5517
2 2.6991 S1 4.8412
S1 3.7063 2 5.3171
3 3.9387 3 6.0397
4 4.7761 4 6.7270
5 5.0963 5 7.3836
6 5.6834 S2 7.7130
- — 6 8.0129
Fig. 2. Mixed coaxial waveguide ([2]).
Mode TE4
TABLE I1 10
MIXED CoAXIAL WAVEGUIDE—TE MODES VALUES OF k - a 0.0
Mode Computed Ref. 2] Diff. % -
1 1.7453 1.7407 0.26 < 087
2 3.0416 3.0441 0.08 g 057
3 4.2185 4.2199 0.03 < 044
4 4.6311 4.6451 0.30 Y
5 5.2066 — —
0.2+
0.14
0.0 Inner condtJucg%l'r
~. Quier_conductor
TABLE III o 90.0 !ZIO.O |5I0.0 \ |B‘O‘D 2(‘0.0 2(‘0‘0 270.0
MiXED COAXIAL WAVEGUIDE—TM MODES VALUES OF k - a ¢ (degrees)
Mode Computed Ref. [2] Diff. % Fig. 4. Current of the TE4 modtzFoig th3e) circular coaxial offset waveguide
1 3.9019 3.8919 0.26 .
g 4.1717 . 4.1666 0.12 Tn comparison with the case of the coaxial circular
1 g'gggg g'ggig ggg waveguide, new features in the modal characterization of
5 6.4277 — - the offset one appear; in particular, in the case of cylin-

Fig. 3. Offset circular coaxial waveguide.

@

4'2

gk, p,p') =

sin (k,x) - sin (k,x') - sin (k,y) - sin (k,y")

drical symmetry the inner and outer conductor currents
exhibit an equal number of zeros, maxima, and minima.

In the offset waveguide a part of the modes correspond
to the symmetric case (TE1, 2, 3, 5, TM2, 4, 6), while
the remaining ones exhibit currents which are intrinisi-
cally different. The case of the TE4 mode is shown in Fig.
4. It is an open question whether these modes arise by

“splitting of some degenerate mode or result from the shift

toward lower frequencies of very high order symmetric
modes.

VII. WIRE LINES INTO RECTANGULAR WAVEGUIDES
The geometry is shown in Fig. 5; the outer conductor
is now a rectangular waveguide and the Green’s function

gis

a*b m,n=1

k2 _ k2 _ k2 (15)
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Fig. 5. Geometry of multi-wire lines into a rectangular waveguide.

TABLE V
SINGLE WIRE INTO A RECTANGULAR WAVEGUIDE—PERTURBED TM MODES
VALUESOFk *b,a =2 b,x, =b, b, =b/2

Mode Imp. Matrix MM Solution Diff. %
2:A,=001"-a
1 3.9875 3.9940 0.16
2 6.0773 6.0850 0.13
3 8.6819 — —
4 9.7804 — —
5 10.7630 — —
2+-A, =0.001a
1 3.8108 3.8203 0.25
2 5.8907 5.8990 0.14
3 8.5936 — —
4 9.6852 — -
5 10.6632 — —

where a and b are the rectangular waveguide dimensions,
ky = mw /a and k, = nx /b. If wires of square section of
sides 2 - A, are located at (x,, y,), the TM impedance
matrix according to (8) is

42

sin (kmxr) sin (kmxr’) sin (knyr) sin (knyr’) N

669

TABLE VI
Two WIRES INTO A RECTANGULAR WAVEGUIDE—PERTURBED TM MODES
VALUESOFk * b,a =2 b,w=0b,b, =b/2

Mode Imp. Matrix MM Solution Diff. %

2-A,=001"a
3.9905 3.9962 0.14
5.3426 5.3475 0.09
6.0794 - -
9.7821 — —~
10.9025 - -

(O R R S

2-A, =0001-a
3.8138 - -
4.9673 - -
5.8918 - -
8.5949 - -
9.6868 - -

(O R o

[ 4

© © o © © 0 © 0 o o o
: !
\
: x.y)
i

© T S

Fig. 6. Geometry of multi-wire lines above a ground plane.

TMy,, + 1.2, +1 modes only are perturbed, and compared
with the results obtained by MM. Table VI collects the
results for a symmetric two-wire line, in which the
TM,, 2, + 1 modes only are perturbed. The numerical res-

r . r

7z ;= -
(_k)rr a-b el

where the coefficients «/,,, which characterize the wire
dimension, are

, 1 sifl (k,A)
Qo = 2 {COS (km Ar) knAr
sin (k,A,)
+ kA, cos (k, A,)}. a7

The computational efficiency in the evaluation of (16)
may be improved by reducing the double sum to a single
one by techniques explained in [9]; the analytical resuits
are shown in [8].

The results about the characteristic impedance have

been compared with those of [4]; if d = 1.169 - (24),

where d is the equivalent circular wire diameter, the re-
sults agree to within 0.01% if d/a < 0.02 for a single
wire symmetrically sited in a square waveguide. The
agreement is within 0.1% for two wires when d/w < 0.1
and w/a < 0.9.

The cut-off wavenumbers of TM modes are reported in
Table V for a symmetric single wire line, in which the

o
k2 _ ern . ki mn mn

(16)

olution by MM proved to be difficult due to the sharpness
of the zeros of the function to be evaluated.

VIII. WIrRe LINES ABOVE A GROUND PLANE

The geometry is shown in Fig. 6; the outer conductor
is now the ground plane, and the relevant Green’s func-
tion g is

¢ S_m dt Sink(fy_) S'fif (gzy )

(’18)

1

— 0o

sexp (—j{x — x'))

The TM modes impedance matrix according to (8) is

sin (§y,) * sin (§y,)
k2 _ §_2 _ 52

ZO +
(Zk)rr' = ——W

-0

d¢ S dt
© eXp (_J g‘(xr - xr’)) : Oé?z ) argis
(19)
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where the coefficients «f;, in analogy with (17), are
sin (£4,) | sin ({A))
£A, A,

1
ay = E{COS (c4,) -

* cos (EA,)}. 20)

The computational evaluation of (19) may be improved
by reducing the double integral to a single one by complex
plane integration techniques; resuits for the static imped-
ance matrix are shown in the Appendix.

The results about the characteristic impedance have
been compared with those of [4]; if d = 1.163 - (2 - A),
where d is the equivalent circular wire diameter, the re-
sults agree to within 0.01% when H/d > 3, both for a
single wire and for a couple of wires.

The complex cutoff wavenumbers for TM modes are
found by using an impedance matrix different from that
of (19) to avoid the computation of complex integrals; the
Green’s function for the half-space was used:

gk, p, p’) = —j/4 - [HPKlp — p'])
— Hf'(klp — p*' )] (1)

where H (()2) is the Hankel function of 2nd kind of order O,
and p*' = (x’, —y'). A point-matching approximation is
used, in the sense that for each element of the impedance
matrix the potential is evaluated at the wire center. The
procedure to find the zeros of det (Z,) is similar to that of
the previous section, except for the need to calculate com-
plex rather than real wavenumbers.

The results for a single-wire line above a ground plane
are reported in Table VII. As could be expected from SEM
analyses, the zeros are grouped into layers in the complex
k plane; the imaginary part of k increases as the wire di-
ameter decreases.

The computed values for a two-wire line are reported
in Table VIII where the symmetry of the induced currents
is identified. In the frequency domain SEM framework [7]
the current induced by an arbitrary excitation of the wire
line is described as an expansion in the resonant currents,
whose coeflicients are proportional to 1/(k — k). It is
remarkable that the cutoff frequency of the lower order
antisymmetric modes has a large imaginary part; hence
the contribution of these resonances to the current expan-
sion at real excitation frequencies should be less impor-
tant than that of the symmetric modes, and a balanced
TEM transmission line is expected to provide a wider fre-
quency band than a balanced one.

Finally, a complex multiwire transmission line above a
ground plane was designed by use of these techniques; the
shape of the central section is shown in Fig. 7, and the
wire diameters were chosen in order to yield a 200 Q bal-
anced characteristic impedance. It is a balanced transmis-
sion line, and the outer wire array works as a shield of the
inner TM fields; the VSWR in Fig. 8 is less than 2 over
a wide frequency band, a good result considering the
complexity of the structure and the termination prob-

TABLE VII
SINGLE WIRE ABOVE A GROUND PLANE—TM MODES VALUES OF k - H

Mode 2:-4A4,=001-H 2:-4,=0001-H 2-4,=0.0001-H
1 2.8857 + 1.1006f  2.8008 + 1.2941;  2.7532 + 1.4738;
2 6.0830 + 1.1939  5.9890 + 1.4131j  5.9423 + 1.5699
3 9.2569 + 1.2439j  9.1516 + 1.4808;  9.1029 + 1.6469j
4 12.4233 + 1.2769; 12.3067 + 1.5274j 12.2556 + 1.7009j
5 15.5857 + 1.3011j 15.4583 + 1.5628; 15.4048 + 1.7423j
6 18.7459 + 1.3200; 18.6080 + 1.5911; 18.5521 + 1.7757;j

TABLE VIII
TwO WIRES ABOVE A GROUND PLANE—TM MODES

)

VALUESOFk  H,w=35-H,2 - A, =001-H

Mode Computed Parify

0.5568 + 1.8545j
2.9521 + 0.6344;
3.7270 + 1.7467,
5.7892 + 0.7964;
6.9491 + 1.3116y
9.7284 + 1.0825j
12.2038 + 0.9664;
12.8284 + 1.2458;
15.0404 + 1.0334;
16.0874 + 1.0891;
18.1773 + 1.3646;

— OV NN R W —
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Fig. 7. Central section of the designed multiwire transmission line.
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Fig. 8. Measured VSWR of the transmission line.

lems. Moreover, field measurements of the TEM mode
inside the line have shown an agreement better than
1.5 dB with the theoretical results.

IX. CoNCLUSION
The theoretical setting for a complete modal character-
ization of multi-connected, uniform, hollow, conducting
waveguides has been established. The numerical analysis
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is performed only on the inner conductors; this approach
leads to a considerable reduction of the degrees of free-
dom of the problem, provided that the Green’s functions
of the outer conductor are known. Moreover, it has been
verified that in the case of wire lines in rectangular wave-
guides a standard MM solution to the problem is very dif-
ficult; the numerical efficiency of the algorithm is greatly
improved by the present approach, according to [1].

The numerical procedures for determining the higher
order modes of multi-connected waveguides with a surface
integral formulation always exhibit spurious solutions at
the inner conductor resonant frequencies; two criteria to
discard without any doubt such modes have been pro-
posed. ,

The analysis of waveguides whose spatial domain is
unbounded shares many aspects. with SEM techniques
(e.g., [71); it has been verified (mainly in time domain
problems) that an expansion of the currents in the base of
complex resonant currents gives correct results (see also
[10]). A complete study in the SEM framework of wave-
guides whose spatial domain is unbounded would lead to
an exact modal characterization of these geometries, in
analogy with the classical analysis of closed waveguides
by means of orthogonal functions; however the required
functional analysis techniques are very complex.

Finally, it is thought that a careful characterization of
useful basis for the vector space of TEM modes in wire
lines may lead to simple criteria in establishing optimi-
zation algorithms for some parameters of the problem
(e.g., TEM mode field uniformity, or impedance prop-
erties); further analyses should be carried on in this direc-
tion.

APPENDIX

It is possible to reduce the double integral in (19) to a
single one; the convergence of the integral is exponential
for off-diagonal matrix elements, quadratic for diagonal
ones. The residues theorem and Jordan’s lemma are used;
only the relevant results are shown. The static impedance
matrix is considered.

If |y, — yo] > |x, — x,| it is useful to perform the &
integration to achieve a fast converging { integral; the re-
sult is

@) = ~Zo/@7) - SO dt cos (¢lx, — x,])
. [eXP (_g“ Yr + yr'l) — €xXp (_g‘l Yr — yr’l)]

Al
¢ (AD)

which is valid if | y, — y.| > A, + A,; v} may be ob- 7

tained by replacement of £ with j, in o ¢ ((21)).
In the dual case, the result is
+oo
D = Zo/7 - SO dg sin (£y,) - sin (£3y)
r r
Ye© Ve

* €Xp (—Elxr - xr") : E

A2
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which is valid if |x, — x| > A, + A,; y; may be ob-
tained by replacement of { with j§ in af;.

Finally, if the matrix element is diagonal, the proce-
dure is slightly different. The final result is
+oo '

(Z) = Zy/(@m) - SO dg sin® (£y,) - B'/E (A3)

where

B" = sin (§A)/(¢4)) - lcosh (§4,) - sin (£4,)/(34)

+2 - cos (£A,) - sinh (EA,)/(EA))] - exp (—£A,)
+ COSZ (EAr) : [1 — €Xp (_EAr)
- sinh (£A,)/(£A)1/(£A,).

(Ad)

REFERENCES

[1]1 G. Conciauro, M. Bressan, and C. Zuffada, ‘‘Waveguide modes via
an integral equation leading to a linear matrix eigenvalue problem,”’
IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1495-1504,
Nov. 1984. o

[2] M. Swaminathan et al., ‘‘Computation of cutoff wavenumbers of TE
and TM modes in waveguides of arbitrary cross sections using a sur-
face integral formulation,”” IEEE Trans. Microwave Theory Tech.,
vol. 38, pp. 154-159, Feb. 1990.

[3] B. Spieiman and R. F. Harrington, ‘‘Waveguides of arbitrary cross
section by solution of a nonlinear integral eigenvalue equation,’” IEEE
Trans. Microwave Theory Tech., vol. MTT-20, pp. 578-585, Sept.
1972.

[4] L. T. Loand S. W. Lee, Eds., Antenna Handbook.
Nostrand, 1988, pp. 28.13-28.18.

[5] L. F. Jelsma et al., ‘‘Boundary conditions for the four vector poten-
tial,”’ IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 648-
649, Sept. 1970.

[6] M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions.,
New York: Dover, 1965, p. 361.

[7] L. Marin, ‘*Natural-mode representation of transient scattered fields,”’
IEEE Trans. Antennas Propagat., vol. AP-21, pp. 809-818, Nov,
1973. i

[8] L. Carbonini, ‘‘Theoretical and experimental analysis of a multi-wire
rectangularly shielded transmission line for EMC measurements,’’ in
Proc. IEEE Int. Symp: on EMC, Cherry Hill, NJ, August 1991.

[9] R. E. Collin, Field Theory of Guided Waves. New York: McGraw-
Hill, pp. 580-589, 1961.

[10] F. M. Tesche, ‘‘On the analysis of scattering and antenna problems
using the singularity expansion technique,”’ IEEE Trans. Antennas
Propag., vol. AP-21, pp. 53-62, Jan. 1973.

New York: Van

Lorenzo Carbonini was born in Vercelli, Italy,
on June 17, 1965. He received the physics degree
cum laude from Universita degli Studi, Turin, It-
aly, in 1989. :

He has been with Alenia Sistemi Difesa, Ca-
selle Torinese (TO), Italy, since 1989. His fields
of interest include multiconnected waveguides,
transmission line devices for EMC measurements,
radar cross section analysis, electromagnetic
properties of materials, spectral techniques in
scattering problems, analytical and numerical
techniques in electromagnetic problems.




